Research
Discussion Paper
PIERspectives
aBRIDGEd
PIER Blog
Events
Conferences
Research Workshops
Policy Forums
Seminars
Exchanges
Research Briefs
Community
PIER Research Network
Visiting Fellows
Funding and Grants
About Us
Our Organization
Announcements
PIER Board
Staff
Work with Us
Contact Us
TH
EN
Research
Research
Discussion Paper
PIERspectives
aBRIDGEd
PIER Blog
Saving and Dissaving Behaviour in an Aged Society
Discussion Paper āļĨāđˆāļēāļŠāļļāļ”
Saving and Dissaving Behaviour in an Aged Society
āļ—āļąāļāļĐāļ°āļ”āļīāļˆāļīāļ—āļąāļĨāļ‚āļ­āļ‡āļœāļđāđ‰āļŠāļđāļ‡āļ­āļēāļĒāļļāļāļĨāļļāđˆāļĄāđ€āļ›āļĢāļēāļ°āļšāļēāļ‡āđƒāļ™āļ›āļĢāļ°āđ€āļ—āļĻāđ„āļ—āļĒ: āļ›āļąāļˆāļˆāļąāļĒāđāļĨāļ°āļ„āļ§āļēāļĄāļ—āđ‰āļēāļ—āļēāļĒāđƒāļ™āļāļēāļĢāđ€āļ‚āđ‰āļēāļŠāļđāđˆāđ‚āļĨāļāļ”āļīāļˆāļīāļ—āļąāļĨ
aBRIDGEd āļĨāđˆāļēāļŠāļļāļ”
āļ—āļąāļāļĐāļ°āļ”āļīāļˆāļīāļ—āļąāļĨāļ‚āļ­āļ‡āļœāļđāđ‰āļŠāļđāļ‡āļ­āļēāļĒāļļāļāļĨāļļāđˆāļĄāđ€āļ›āļĢāļēāļ°āļšāļēāļ‡āđƒāļ™āļ›āļĢāļ°āđ€āļ—āļĻāđ„āļ—āļĒ: āļ›āļąāļˆāļˆāļąāļĒāđāļĨāļ°āļ„āļ§āļēāļĄāļ—āđ‰āļēāļ—āļēāļĒāđƒāļ™āļāļēāļĢāđ€āļ‚āđ‰āļēāļŠāļđāđˆāđ‚āļĨāļāļ”āļīāļˆāļīāļ—āļąāļĨ
Events
Events
Conferences
Research Workshops
Policy Forums
Seminars
Exchanges
Research Briefs
BOT Symposium 2025: Towards Safer and More Inclusive Digital Finance
āļ‡āļēāļ™āļ›āļĢāļ°āļŠāļļāļĄāļ§āļīāļŠāļēāļāļēāļĢāļ•āđˆāļ­āđ„āļ›
BOT Symposium 2025: Towards Safer and More Inclusive Digital Finance
āļāļēāļĢāļ›āļĢāļ°āļŠāļļāļĄāđ€āļ„āļĢāļ·āļ­āļ‚āđˆāļēāļĒāļ™āļąāļāļ§āļīāļˆāļąāļĒāļ™āđ‚āļĒāļšāļēāļĒāļ”āđ‰āļēāļ™āļāļēāļĢāļĨāļ”āļāļēāļĢāļ›āļĨāđˆāļ­āļĒāļāđŠāļēāļ‹āđ€āļĢāļ·āļ­āļ™āļāļĢāļ°āļˆāļāđāļĨāļ°āđ€āļĻāļĢāļĐāļāļāļīāļˆāļ„āļēāļĢāđŒāļšāļ­āļ™āļ•āđˆāļģāļ„āļĢāļąāđ‰āļ‡āļ—āļĩāđˆ 6 “āđ€āļ„āļĢāļ·āđˆāļ­āļ‡āļĄāļ·āļ­āļāļēāļĢāđ€āļ‡āļīāļ™āđāļĨāļ°āļāļēāļĢāļ„āļĨāļąāļ‡: āļāļļāļāđāļˆāļŠāļģāļ„āļąāļāļ‚āļ­āļ‡āļāļēāļĢāđ€āļ›āļĨāļĩāđˆāļĒāļ™āļœāđˆāļēāļ™āļŠāļđāđˆāđ€āļĻāļĢāļĐāļāļāļīāļˆāļ„āļēāļĢāđŒāļšāļ­āļ™āļ•āđˆāļģ”
āļ‡āļēāļ™āļ›āļĢāļ°āļŠāļļāļĄāđ€āļŠāļīāļ‡āļ™āđ‚āļĒāļšāļēāļĒāļĨāđˆāļēāļŠāļļāļ”
āļāļēāļĢāļ›āļĢāļ°āļŠāļļāļĄāđ€āļ„āļĢāļ·āļ­āļ‚āđˆāļēāļĒāļ™āļąāļāļ§āļīāļˆāļąāļĒāļ™āđ‚āļĒāļšāļēāļĒāļ”āđ‰āļēāļ™āļāļēāļĢāļĨāļ”āļāļēāļĢāļ›āļĨāđˆāļ­āļĒāļāđŠāļēāļ‹āđ€āļĢāļ·āļ­āļ™āļāļĢāļ°āļˆāļāđāļĨāļ°āđ€āļĻāļĢāļĐāļāļāļīāļˆāļ„āļēāļĢāđŒāļšāļ­āļ™āļ•āđˆāļģāļ„āļĢāļąāđ‰āļ‡āļ—āļĩāđˆ 6 “āđ€āļ„āļĢāļ·āđˆāļ­āļ‡āļĄāļ·āļ­āļāļēāļĢāđ€āļ‡āļīāļ™āđāļĨāļ°āļāļēāļĢāļ„āļĨāļąāļ‡: āļāļļāļāđāļˆāļŠāļģāļ„āļąāļāļ‚āļ­āļ‡āļāļēāļĢāđ€āļ›āļĨāļĩāđˆāļĒāļ™āļœāđˆāļēāļ™āļŠāļđāđˆāđ€āļĻāļĢāļĐāļāļāļīāļˆāļ„āļēāļĢāđŒāļšāļ­āļ™āļ•āđˆāļģ”
āļŠāļ–āļēāļšāļąāļ™āļ§āļīāļˆāļąāļĒāđ€āļĻāļĢāļĐāļāļāļīāļˆāļ›āđ‹āļ§āļĒ āļ­āļķāđŠāļ‡āļ āļēāļāļĢāļ“āđŒ
āļŠāļ–āļēāļšāļąāļ™āļ§āļīāļˆāļąāļĒāđ€āļĻāļĢāļĐāļāļāļīāļˆ
āļ›āđ‹āļ§āļĒ āļ­āļķāđŠāļ‡āļ āļēāļāļĢāļ“āđŒ
Puey Ungphakorn Institute for Economic Research
Community
Community
PIER Research Network
Visiting Fellows
Funding and Grants
PIER Research Network
PIER Research Network
Funding & Grants
Funding & Grants
About Us
About Us
Our Organization
Announcements
PIER Board
Staff
Work with Us
Contact Us
Staff
Staff
āļ›āļĢāļ°āļāļēāļĻāļĢāļąāļšāļŠāļĄāļąāļ„āļĢāļ—āļļāļ™āļŠāļ–āļēāļšāļąāļ™āļ§āļīāļˆāļąāļĒāđ€āļĻāļĢāļĐāļāļāļīāļˆāļ›āđ‹āļ§āļĒ āļ­āļķāđŠāļ‡āļ āļēāļāļĢāļ“āđŒ āļ›āļĢāļ°āļˆāļģāļ›āļĩ 2568 āļĢāļ­āļšāļ—āļĩāđˆ 2 (āļ›āļĢāļ°āđ€āļ āļ—āļ—āļąāđˆāļ§āđ„āļ›)
āļ›āļĢāļ°āļāļēāļĻāļĨāđˆāļēāļŠāļļāļ”
āļ›āļĢāļ°āļāļēāļĻāļĢāļąāļšāļŠāļĄāļąāļ„āļĢāļ—āļļāļ™āļŠāļ–āļēāļšāļąāļ™āļ§āļīāļˆāļąāļĒāđ€āļĻāļĢāļĐāļāļāļīāļˆāļ›āđ‹āļ§āļĒ āļ­āļķāđŠāļ‡āļ āļēāļāļĢāļ“āđŒ āļ›āļĢāļ°āļˆāļģāļ›āļĩ 2568 āļĢāļ­āļšāļ—āļĩāđˆ 2 (āļ›āļĢāļ°āđ€āļ āļ—āļ—āļąāđˆāļ§āđ„āļ›)
Discussion Paperdp
QR code
Year
2025
2024
2023
2022
...
25 āļāļļāļĄāļ āļēāļžāļąāļ™āļ˜āđŒ 2565
20221645747200000
No. 173

Informal Loans in Thailand: Stylized Facts and Empirical Analysis

Pim Pinitjitsamutāļ§āļīāļĻāļĢāļļāļ• āļŠāļļāļ§āļĢāļĢāļ“āļ›āļĢāļ°āđ€āļŠāļĢāļīāļ

Abstract

This paper examines informal loans in Thailand using household survey data covering 4,800 individuals in 12 provinces across Thailand's six regions. We proceed in three steps. First, we establish stylized facts about informal loans. Second, we estimate the effects of household characteristics on the decision to take out an informal loan and the amount of informal loan. We find that age, the number of household members, their savings, and the amount of existing formal loans are the main factors that drive the decision to take out an informal loan. The main determinations of the amount of informal loan are the interest rate, savings, the amount of existing formal loans, the number of household members, and personal income. Third, we train three machine learning models, namely K–Nearest Neighbors, Random Forest, and Gradient Boosting, to predict whether an individual will take out an informal loan and the amount an individual has borrowed through informal loans. We find that the Gradient Boosting technique with the top 15 most important features has the highest prediction rate of 76.46 percent, making it the best model for data classification. Generally, Random Forest outperforms the other two algorithms in both classifying data and predicting the amount of informal loans.

Pim Pinitjitsamut
Pim Pinitjitsamut
āļ§āļīāļĻāļĢāļļāļ• āļŠāļļāļ§āļĢāļĢāļ“āļ›āļĢāļ°āđ€āļŠāļĢāļīāļ
āļ§āļīāļĻāļĢāļļāļ• āļŠāļļāļ§āļĢāļĢāļ“āļ›āļĢāļ°āđ€āļŠāļĢāļīāļ
Middle Tennessee State University
Download full text
JEL: E26G51O16O17
Tags: informal loansmachine learningshadow economythailandloan sharks
āļ‚āđ‰āļ­āļ„āļīāļ”āđ€āļŦāđ‡āļ™āļ—āļĩāđˆāļ›āļĢāļēāļāļāđƒāļ™āļšāļ—āļ„āļ§āļēāļĄāļ™āļĩāđ‰āđ€āļ›āđ‡āļ™āļ„āļ§āļēāļĄāđ€āļŦāđ‡āļ™āļ‚āļ­āļ‡āļœāļđāđ‰āđ€āļ‚āļĩāļĒāļ™ āļ‹āļķāđˆāļ‡āđ„āļĄāđˆāļˆāļģāđ€āļ›āđ‡āļ™āļ•āđ‰āļ­āļ‡āļŠāļ­āļ”āļ„āļĨāđ‰āļ­āļ‡āļāļąāļšāļ„āļ§āļēāļĄāđ€āļŦāđ‡āļ™āļ‚āļ­āļ‡āļŠāļ–āļēāļšāļąāļ™āļ§āļīāļˆāļąāļĒāđ€āļĻāļĢāļĐāļāļāļīāļˆāļ›āđ‹āļ§āļĒ āļ­āļķāđŠāļ‡āļ āļēāļāļĢāļ“āđŒ
Pim Pinitjitsamut
Pim Pinitjitsamut
āļ§āļīāļĻāļĢāļļāļ• āļŠāļļāļ§āļĢāļĢāļ“āļ›āļĢāļ°āđ€āļŠāļĢāļīāļ
āļ§āļīāļĻāļĢāļļāļ• āļŠāļļāļ§āļĢāļĢāļ“āļ›āļĢāļ°āđ€āļŠāļĢāļīāļ
Middle Tennessee State University

āļŠāļ–āļēāļšāļąāļ™āļ§āļīāļˆāļąāļĒāđ€āļĻāļĢāļĐāļāļāļīāļˆāļ›āđ‹āļ§āļĒ āļ­āļķāđŠāļ‡āļ āļēāļāļĢāļ“āđŒ

273 āļ–āļ™āļ™āļŠāļēāļĄāđ€āļŠāļ™ āđāļ‚āļ§āļ‡āļ§āļąāļ”āļŠāļēāļĄāļžāļĢāļ°āļĒāļē āđ€āļ‚āļ•āļžāļĢāļ°āļ™āļ„āļĢ āļāļĢāļļāļ‡āđ€āļ—āļžāļŊ 10200

āđ‚āļ—āļĢāļĻāļąāļžāļ—āđŒ: 0-2283-6066

Email: pier@bot.or.th

āđ€āļ‡āļ·āđˆāļ­āļ™āđ„āļ‚āļāļēāļĢāđƒāļŦāđ‰āļšāļĢāļīāļāļēāļĢ | āļ™āđ‚āļĒāļšāļēāļĒāļ„āļļāđ‰āļĄāļ„āļĢāļ­āļ‡āļ‚āđ‰āļ­āļĄāļđāļĨāļŠāđˆāļ§āļ™āļšāļļāļ„āļ„āļĨ

āļŠāļ‡āļ§āļ™āļĨāļīāļ‚āļŠāļīāļ—āļ˜āļīāđŒ āļž.āļĻ. 2568 āļŠāļ–āļēāļšāļąāļ™āļ§āļīāļˆāļąāļĒāđ€āļĻāļĢāļĐāļāļāļīāļˆāļ›āđ‹āļ§āļĒ āļ­āļķāđŠāļ‡āļ āļēāļāļĢāļ“āđŒ

āđ€āļ­āļāļŠāļēāļĢāđ€āļœāļĒāđāļžāļĢāđˆāļ—āļļāļāļŠāļīāđ‰āļ™āļŠāļ‡āļ§āļ™āļŠāļīāļ—āļ˜āļīāđŒāļ āļēāļĒāđƒāļ•āđ‰āļŠāļąāļāļāļēāļ­āļ™āļļāļāļēāļ• Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported license

Creative Commons Attribution NonCommercial ShareAlike

āļĢāļąāļšāļˆāļ”āļŦāļĄāļēāļĒāļ‚āđˆāļēāļ§ PIER

Facebook
YouTube
Email