Research
Discussion Paper
PIERspectives
aBRIDGEd
PIER Blog
Events
Conferences
Research Workshops
Policy Forums
Seminars
Exchanges
Research Briefs
Community
PIER Research Network
Visiting Fellows
Funding and Grants
About Us
Our Organization
Announcements
PIER Board
Staff
Work with Us
Contact Us
TH
EN
Research
Research
Discussion Paper
PIERspectives
aBRIDGEd
PIER Blog
Weather Fluctuations and Economic Growth at Subnational Level: Evidence from Thailand
Discussion Paper āļĨāđˆāļēāļŠāļļāļ”
Weather Fluctuations and Economic Growth at Subnational Level: Evidence from Thailand
āļŠāđˆāļ­āļ‡āļ›āļąāļāļŦāļēāļŦāļ™āļĩāđ‰āļ„āļĢāļąāļ§āđ€āļĢāļ·āļ­āļ™āđ„āļ—āļĒ: āļŠāļēāđ€āļŦāļ•āļļāđāļĨāļ°āļ—āļēāļ‡āđ€āļĨāļ·āļ­āļāļ‚āļ­āļ‡āļ™āđ‚āļĒāļšāļēāļĒāļāļēāļĢāđ€āļ‡āļīāļ™
aBRIDGEd āļĨāđˆāļēāļŠāļļāļ”
āļŠāđˆāļ­āļ‡āļ›āļąāļāļŦāļēāļŦāļ™āļĩāđ‰āļ„āļĢāļąāļ§āđ€āļĢāļ·āļ­āļ™āđ„āļ—āļĒ: āļŠāļēāđ€āļŦāļ•āļļāđāļĨāļ°āļ—āļēāļ‡āđ€āļĨāļ·āļ­āļāļ‚āļ­āļ‡āļ™āđ‚āļĒāļšāļēāļĒāļāļēāļĢāđ€āļ‡āļīāļ™
Events
Events
Conferences
Research Workshops
Policy Forums
Seminars
Exchanges
Research Briefs
Optimal Progressive Consumption Tax in an Economy with Consumption Tax Evasion
āļ‡āļēāļ™āļŠāļąāļĄāļĄāļ™āļēāļĨāđˆāļēāļŠāļļāļ”
Optimal Progressive Consumption Tax in an Economy with Consumption Tax Evasion
PIER Research Workshop āļ›āļĢāļ°āļˆāļģāļ›āļĩ 2568
āļ‡āļēāļ™āļ›āļĢāļ°āļŠāļļāļĄāđ€āļŠāļīāļ‡āļ›āļāļīāļšāļąāļ•āļīāļāļēāļĢāļĨāđˆāļēāļŠāļļāļ”
PIER Research Workshop āļ›āļĢāļ°āļˆāļģāļ›āļĩ 2568
āļŠāļ–āļēāļšāļąāļ™āļ§āļīāļˆāļąāļĒāđ€āļĻāļĢāļĐāļāļāļīāļˆāļ›āđ‹āļ§āļĒ āļ­āļķāđŠāļ‡āļ āļēāļāļĢāļ“āđŒ
āļŠāļ–āļēāļšāļąāļ™āļ§āļīāļˆāļąāļĒāđ€āļĻāļĢāļĐāļāļāļīāļˆ
āļ›āđ‹āļ§āļĒ āļ­āļķāđŠāļ‡āļ āļēāļāļĢāļ“āđŒ
Puey Ungphakorn Institute for Economic Research
Community
Community
PIER Research Network
Visiting Fellows
Funding and Grants
PIER Research Network
PIER Research Network
Funding & Grants
Funding & Grants
About Us
About Us
Our Organization
Announcements
PIER Board
Staff
Work with Us
Contact Us
Staff
Staff
āļ›āļĢāļ°āļāļēāļĻāļĢāļąāļšāļŠāļĄāļąāļ„āļĢāļ—āļļāļ™āļŠāļ–āļēāļšāļąāļ™āļ§āļīāļˆāļąāļĒāđ€āļĻāļĢāļĐāļāļāļīāļˆāļ›āđ‹āļ§āļĒ āļ­āļķāđŠāļ‡āļ āļēāļāļĢāļ“āđŒ āļ›āļĢāļ°āļˆāļģāļ›āļĩ 2568 āļĢāļ­āļšāļ—āļĩāđˆ 2 (āļ›āļĢāļ°āđ€āļ āļ—āļ—āļąāđˆāļ§āđ„āļ›)
āļ›āļĢāļ°āļāļēāļĻāļĨāđˆāļēāļŠāļļāļ”
āļ›āļĢāļ°āļāļēāļĻāļĢāļąāļšāļŠāļĄāļąāļ„āļĢāļ—āļļāļ™āļŠāļ–āļēāļšāļąāļ™āļ§āļīāļˆāļąāļĒāđ€āļĻāļĢāļĐāļāļāļīāļˆāļ›āđ‹āļ§āļĒ āļ­āļķāđŠāļ‡āļ āļēāļāļĢāļ“āđŒ āļ›āļĢāļ°āļˆāļģāļ›āļĩ 2568 āļĢāļ­āļšāļ—āļĩāđˆ 2 (āļ›āļĢāļ°āđ€āļ āļ—āļ—āļąāđˆāļ§āđ„āļ›)
Discussion Paperdp
QR code
Year
2025
2024
2023
2022
...
26 āļžāļĪāļĻāļˆāļīāļāļēāļĒāļ™ 2564
20211637884800000
No. 168

Credit Risk Database: Credit Scoring Models for Thai SMEs

āļ āļđāļĄāļīāđƒāļˆ āļ•āļąāđ‰āļ‡āļŠāļ§āļąāļŠāļ”āļīāļĢāļąāļ•āļ™āđŒāļŠāļļāļĢāļ™āļąāļ™āļ—āđŒ āļ•āļąāļ“āļ‘āđŒāļžāļđāļ™āđ€āļāļĩāļĒāļĢāļ•āļīāļšāļļāļĢāļąāļŠāļāļĢ āļ•āļąāđ‰āļ‡āļŠāļąāļˆāļˆāļēāļ™āļąāļ™āļ—āđŒ

Abstract

This paper aims to provide an introduction to Credit Risk Database (CRD), a collection of financial and non-financial data for SME credit risk analysis, for Thailand. Aligning with the Bank of Thailand (BOT)'s strategic plan to develop the data ecosystem to help reduce asymmetric information problem in the financial sector, CRD is an initiative to effectively utilize data already collected from financial institutions as a part of the BOT's supervisory mandate. Our first use case is intended to help improve financial access for SMEs, by building credit risk models that can work as a complementary tool to help financial institutions and Credit Guarantee Corporation assess SMEs financial prospects in parallel with internal credit score. Focusing on SMEs who are new borrowers, we use only SME's financial and non-financial data as our explanatory variables while disregarding past default-related data such as loan repayment behavior. Credit risk models of various methodologies are then built from CRD data to allow financial institutions to conduct effective risk-based pricing, offering different sets of interest rates and loan terms. Statistical methods (i.e. logit regression and credit scoring) and machine learning methods (i.e. decision tree and random forest) are used to build credit risk models that can help quantify the SME's one-year forward probability of default. Out-of-sample prediction results indicate that the statistical and machine learning models yield reasonably accurate probability of default predictions, with the maximum Area under the ROC Curve (AUC) at approximately 70–80%. The model with the best performance, as compared by the maximum AUC, is the random forest model. However, the credit scoring model that is developed from logistic regression of weighted-of-evidence variables is more user-friendly for credit loan providers to interpret and develop practical application, achieving the second-best AUC.

āļ āļđāļĄāļīāđƒāļˆ āļ•āļąāđ‰āļ‡āļŠāļ§āļąāļŠāļ”āļīāļĢāļąāļ•āļ™āđŒ
āļ āļđāļĄāļīāđƒāļˆ āļ•āļąāđ‰āļ‡āļŠāļ§āļąāļŠāļ”āļīāļĢāļąāļ•āļ™āđŒ
āļ˜āļ™āļēāļ„āļēāļĢāđāļŦāđˆāļ‡āļ›āļĢāļ°āđ€āļ—āļĻāđ„āļ—āļĒ
āļŠāļļāļĢāļ™āļąāļ™āļ—āđŒ āļ•āļąāļ“āļ‘āđŒāļžāļđāļ™āđ€āļāļĩāļĒāļĢāļ•āļī
āļŠāļļāļĢāļ™āļąāļ™āļ—āđŒ āļ•āļąāļ“āļ‘āđŒāļžāļđāļ™āđ€āļāļĩāļĒāļĢāļ•āļī
āļ˜āļ™āļēāļ„āļēāļĢāđāļŦāđˆāļ‡āļ›āļĢāļ°āđ€āļ—āļĻāđ„āļ—āļĒ
āļšāļļāļĢāļąāļŠāļāļĢ āļ•āļąāđ‰āļ‡āļŠāļąāļˆāļˆāļēāļ™āļąāļ™āļ—āđŒ
āļšāļļāļĢāļąāļŠāļāļĢ āļ•āļąāđ‰āļ‡āļŠāļąāļˆāļˆāļēāļ™āļąāļ™āļ—āđŒ
āļ˜āļ™āļēāļ„āļēāļĢāđāļŦāđˆāļ‡āļ›āļĢāļ°āđ€āļ—āļĻāđ„āļ—āļĒ
Download full text
JEL: C52C53C55D81G21G32
Tags: credit risk databasecredit scorecredit risk assessmentcredit scoring modelthai smes
āļ‚āđ‰āļ­āļ„āļīāļ”āđ€āļŦāđ‡āļ™āļ—āļĩāđˆāļ›āļĢāļēāļāļāđƒāļ™āļšāļ—āļ„āļ§āļēāļĄāļ™āļĩāđ‰āđ€āļ›āđ‡āļ™āļ„āļ§āļēāļĄāđ€āļŦāđ‡āļ™āļ‚āļ­āļ‡āļœāļđāđ‰āđ€āļ‚āļĩāļĒāļ™ āļ‹āļķāđˆāļ‡āđ„āļĄāđˆāļˆāļģāđ€āļ›āđ‡āļ™āļ•āđ‰āļ­āļ‡āļŠāļ­āļ”āļ„āļĨāđ‰āļ­āļ‡āļāļąāļšāļ„āļ§āļēāļĄāđ€āļŦāđ‡āļ™āļ‚āļ­āļ‡āļŠāļ–āļēāļšāļąāļ™āļ§āļīāļˆāļąāļĒāđ€āļĻāļĢāļĐāļāļāļīāļˆāļ›āđ‹āļ§āļĒ āļ­āļķāđŠāļ‡āļ āļēāļāļĢāļ“āđŒ
āļ āļđāļĄāļīāđƒāļˆ āļ•āļąāđ‰āļ‡āļŠāļ§āļąāļŠāļ”āļīāļĢāļąāļ•āļ™āđŒ
āļ āļđāļĄāļīāđƒāļˆ āļ•āļąāđ‰āļ‡āļŠāļ§āļąāļŠāļ”āļīāļĢāļąāļ•āļ™āđŒ
āļ˜āļ™āļēāļ„āļēāļĢāđāļŦāđˆāļ‡āļ›āļĢāļ°āđ€āļ—āļĻāđ„āļ—āļĒ
āļŠāļļāļĢāļ™āļąāļ™āļ—āđŒ āļ•āļąāļ“āļ‘āđŒāļžāļđāļ™āđ€āļāļĩāļĒāļĢāļ•āļī
āļŠāļļāļĢāļ™āļąāļ™āļ—āđŒ āļ•āļąāļ“āļ‘āđŒāļžāļđāļ™āđ€āļāļĩāļĒāļĢāļ•āļī
āļ˜āļ™āļēāļ„āļēāļĢāđāļŦāđˆāļ‡āļ›āļĢāļ°āđ€āļ—āļĻāđ„āļ—āļĒ
āļšāļļāļĢāļąāļŠāļāļĢ āļ•āļąāđ‰āļ‡āļŠāļąāļˆāļˆāļēāļ™āļąāļ™āļ—āđŒ
āļšāļļāļĢāļąāļŠāļāļĢ āļ•āļąāđ‰āļ‡āļŠāļąāļˆāļˆāļēāļ™āļąāļ™āļ—āđŒ
āļ˜āļ™āļēāļ„āļēāļĢāđāļŦāđˆāļ‡āļ›āļĢāļ°āđ€āļ—āļĻāđ„āļ—āļĒ

āļŠāļ–āļēāļšāļąāļ™āļ§āļīāļˆāļąāļĒāđ€āļĻāļĢāļĐāļāļāļīāļˆāļ›āđ‹āļ§āļĒ āļ­āļķāđŠāļ‡āļ āļēāļāļĢāļ“āđŒ

273 āļ–āļ™āļ™āļŠāļēāļĄāđ€āļŠāļ™ āđāļ‚āļ§āļ‡āļ§āļąāļ”āļŠāļēāļĄāļžāļĢāļ°āļĒāļē āđ€āļ‚āļ•āļžāļĢāļ°āļ™āļ„āļĢ āļāļĢāļļāļ‡āđ€āļ—āļžāļŊ 10200

āđ‚āļ—āļĢāļĻāļąāļžāļ—āđŒ: 0-2283-6066

Email: pier@bot.or.th

āđ€āļ‡āļ·āđˆāļ­āļ™āđ„āļ‚āļāļēāļĢāđƒāļŦāđ‰āļšāļĢāļīāļāļēāļĢ | āļ™āđ‚āļĒāļšāļēāļĒāļ„āļļāđ‰āļĄāļ„āļĢāļ­āļ‡āļ‚āđ‰āļ­āļĄāļđāļĨāļŠāđˆāļ§āļ™āļšāļļāļ„āļ„āļĨ

āļŠāļ‡āļ§āļ™āļĨāļīāļ‚āļŠāļīāļ—āļ˜āļīāđŒ āļž.āļĻ. 2568 āļŠāļ–āļēāļšāļąāļ™āļ§āļīāļˆāļąāļĒāđ€āļĻāļĢāļĐāļāļāļīāļˆāļ›āđ‹āļ§āļĒ āļ­āļķāđŠāļ‡āļ āļēāļāļĢāļ“āđŒ

āđ€āļ­āļāļŠāļēāļĢāđ€āļœāļĒāđāļžāļĢāđˆāļ—āļļāļāļŠāļīāđ‰āļ™āļŠāļ‡āļ§āļ™āļŠāļīāļ—āļ˜āļīāđŒāļ āļēāļĒāđƒāļ•āđ‰āļŠāļąāļāļāļēāļ­āļ™āļļāļāļēāļ• Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported license

Creative Commons Attribution NonCommercial ShareAlike

āļĢāļąāļšāļˆāļ”āļŦāļĄāļēāļĒāļ‚āđˆāļēāļ§ PIER

Facebook
YouTube
Email